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We demonstrate jWi state encoding of multiatom ensemble qubits. Using optically trapped Rb atoms,
the T2 coherence time is 2.6(3) ms for N̄ ¼ 7.6 atoms and scales approximately inversely with the number
of atoms. Strong Rydberg blockade between two ensemble qubits is demonstrated with a fidelity of 0.89(1),
and with a fidelity of ∼1.0 when postselected on a control ensemble excitation. These results are a
significant step towards deterministic entanglement of atomic ensembles.
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Qubits encoded in hyperfine states of neutral atoms
are a promising approach for scalable implementation
of quantum information processing [1]. While a qubit
can be encoded in a pair of ground states of a single atom,
it is also possible to encode a qubit, or even multiple
qubits, in an N-atom ensemble by using Rydberg block-
ade to enforce single excitation of one of the qubit states
[2,3]. Ensemble qubits have several interesting features in
comparison to single-atom qubits. Using an array of traps,
it is simpler to prepare many ensemble qubits, with N ≥ 1

for each ensemble, than it is to prepare an array with
exactly one atom in each trap, which remains an out-
standing challenge [4–6]. In addition, a jWi state ensem-
ble qubit encoding is maximally robust against the loss
of a single atom [7], which can be remedied with error
correction protocols [8], while atom loss is a critical error
for single-atom qubits. Furthermore, an ensemble encod-
ing facilitates strong coupling between atoms and light, an
essential ingredient for quantum networking protocols [9]
and atomic control of photonic interactions in Rydberg-
blockaded ensembles [10]. As the atom-light coupling
strength grows with the number of atoms, recent experi-
ments [10,11] and theory proposals [12] are based on
ensembles with N > 100. We are focused here on study-
ing the physics of ensembles for computational qubits
and, therefore, work with smaller ensembles with up to
N ∼ 10 atoms.
In this Letter we demonstrate and study the coherence

and interactions of atomic ensemble qubits. We measure
the T2 coherence time of ensemble qubits, achieving
a ratio of coherence time to single-qubit π rotation
time of ∼2600. We furthermore proceed to demonstrate
strong Rydberg blockade between two spatially separated
ensemble qubits. With the recent demonstration of entan-
glement between a Rydberg-excited ensemble and a
propagating photon [13], these results establish a path
towards both local and remote entanglement of arrays of
ensemble qubits, which will enable enhanced quantum
repeater architectures [14].

The computational basis states of the ensemble qubits are

j0̄i ¼ j01;…; 0Ni;

j1̄i ¼ 1ffiffiffiffi
N

p
XN
j¼1

j0102;…; 1j;…; 0Ni; ð1Þ

where j0ji and j1ji are two ground states of the jth atom in
an N-atom sample [15]. The state j1̄i, which is a symmetric
superposition of one of the N atoms being excited, is
commonly referred to as a jWi state.
Gate protocols for ensemble qubits differ from the single-

atom qubit case [2,16], as all operations must use blockade
to prohibit multiatom excitation. Gate operations are per-
formed via the collective, singly excited Rydberg state

jr̄i ¼ 1ffiffiffiffi
N

p
XN
j¼1

j0102;…; rj;…; 0Ni;

where jrji is the Rydberg state of the jth atom. A single-
qubit rotation Rðθ;ϕÞ with area θ and phase ϕ between
ensemble states j0̄i; j1̄i is implemented as the three pulse

sequence j1̄i→Ω
π
jr̄i, jr̄i↔ΩN

Rðθ;ϕÞ
j0̄i, jr̄i→Ω

π
j1̄i. Note that the

coupling strength between states j1̄i; jr̄i is the single-
atom Rabi frequency Ω, while the coupling between
j0̄i; jr̄i is at the collective Rabi frequency ΩN ¼ ffiffiffiffi

N
p

Ω.
Since ΩN depends on N, the one-qubit gate pulse lengths
depend on the number of atoms. A CZ gate between control
and target ensembles c; t is implemented as the three pulse

sequence j1̄ic →Ωπ jr̄ic, j1̄it↔
Ω

2π
jr̄it, jr̄ic →Ωπ j1̄ic. The CZ gate

pulses do not depend on the number of atoms. The
N dependence of the one-qubit gates can be strongly
suppressed using adiabatic pulse sequences so that
high-fidelity gate operations are possible with small, but
unknown, values of N [17].
The experimental setting is as described in [18]. In brief,

we prepare a cold sample of 87Rb atoms in a magneto-
optical trap and then load a variable number of atoms into
optical dipole traps. The dipole traps shown in Fig. 1 are
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formed by focusing 1064-nm light to waists (1=e2 intensity
radii) of 3.0 μm. The atoms are cooled to a temperature of
∼150 μK in 1–1.5-mK deep optical potentials. This gives
approximately Gaussian-shaped density distributions with
typical standard deviations σ⊥ ¼ 0.7 μm perpendicular to
the long trap axis and σz ¼ 7 μm parallel to the long axis.
The estimated density at trap center is n=N¼ 5×1016 m−3.
We apply a bias magnetic field along the trap axis of
Bz ¼ 0.24 mT and optically pump into j0i≡j5s1=2;
f¼2;mf¼0i using π-polarized 795-nm light resonant with
j5s1=2; f ¼ 2i→j5p1=2; f ¼ 2i and 780-nm repump light
resonant with j5s1=2; f ¼ 1i→j5p3=2; f ¼ 2i.
Rydberg excitation coupling j0̄i; jr̄i is performed by

off-resonant two-photon transitions via 5p3=2 [19] using
counterpropagating 7800- and 480-nm light. With σþ
polarization for both beams, we couple to the Rydberg
state jri ¼ jnd5=2; mj ¼ 5=2i, which is selected with a
Bz ¼ 0.37 mT bias field. The other qubit ground state is
j1i≡ j5s1=2; f ¼ 1; mf ¼ 0i. Coupling between j1̄i; jr̄i is
performed with 7801- and 480-nm light, where 7800 and
7801 have the same propagation vector and polarization
but a frequency difference of 6.8 GHz corresponding to
the 87Rb f ¼ 1↔f ¼ 2 clock frequency. In the experi-
ments reported below we used Rydberg levels 97d5=2 and
111d5=2. In both cases strong blockade was observed in
individual ensembles, with no evidence for double excita-
tion of the logical j1̄i state [18]. While we do not observe
double excitation of j1̄i, experiments with two ensembles
do show evidence for double excitation of the Rydberg state
jr̄i, which plays a role in limiting the fidelity with which we
can prepare the j1̄i state.
We proceed to demonstrate the coherence of the ensem-

ble states of Eq. (1) using Ramsey interferometry. The
amplitude of the Ramsey signal is used to quantify the
presence of N-atom entanglement in the ensemble, as has
been observed in other recent experiments [20,21]. Details

of the analysis showing that 82� 6% of the atoms
participate in the entangled jWi state are presented in
the Supplemental Material [22]. We load 3 < N̄ < 10
atoms into one of the optical traps. The number of atoms
loaded for each measurement follows a Poisson distribution
with mean N̄. Each measurement starts with optical
pumping into j0̄i followed by the pulse sequence

jψi ¼ R1ðπÞR0ðπ=2ÞR1ðπÞGðtÞR1ðπÞR0ðπ=2Þj0̄i: ð2Þ

Here R0ðθÞ is a pulse of area θ between states j0̄i; jr̄i
and R1ðθÞ is a pulse of area θ between states j1̄i; jr̄i.
The first R0ðπ=2Þ pulse creates an equal superposition
ðj0̄i þ jr̄iÞ= ffiffiffi

2
p

. This is then mapped to ðj0̄i þ j1̄iÞ= ffiffiffi
2

p
with a R1ðπÞ pulse; we wait a gap time t described by an
operator GðtÞ, map j1̄i→jr̄i with a R1ðπÞ pulse, and then
perform another π=2 pulse between j0̄i; jr̄i. Finally, any
population left in jr̄i is mapped back to j1̄i with another
R1ðπÞ pulse. Atoms in state j0i are then pushed out of the
trap using unbalanced radiation pressure from a beam
resonant with j5s1=2; f ¼ 2i→j5p3=2; f ¼ 3i while the
dipole trap light is chopped on and off. For the push-out
step a bias field is applied along x, the narrow axis of the
dipole traps, and the circularly polarized push-out beam
propagates along x. This is followed by a measurement of
the number of atoms remaining in the dipole trap, giving
the data in Fig. 2. The amplitude of the Ramsey interference
at short gap times is limited by the jWi state preparation
fidelity of about 50% for the atom number used in the
figure. The fidelities of the R0ðπÞ and R1ðπÞ pulses used
to prepare jWi are estimated to each be at least 90% on
the basis of previous experiments [18] and the strong
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FIG. 1 (color online). Experimental geometry (a) and transitions
used for qubit control (b). The Raman light is only used for
the preparation of product states, as discussed in connection
with Fig. 3.
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FIG. 2 (color online). Ramsey interference measurement of
qubit coherence for N̄ ¼ 7.6. The peak-peak amplitude of the
oscillation as a function of the gap time gives T2 ¼ 2.6ð3Þ ms.
The circles are data points with �σ error bars and the dashed and
solid lines are fits to the functions vaðtÞ; vbðtÞ defined in the text.
The gap time is the time t between the R1ðπÞ pulses in Eq. (2).
All data have been corrected for ∼1.5% probability per atom of
the blowaway giving an unwanted transition from j0i→j1i. The
inset shows the Ramsey oscillations for gap times of 0 (solid
line), 0.5 ms (dashed line), and 2.5 ms (dashed-dotted line).
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interensemble blockade effect we report below. We attrib-
ute the limited jWi state preparation fidelity to Rydberg
dephasing. Periodic fluorescencemeasurements of themean
atom number (described in the Supplemental Material to
[18]) bound drifts to 6.7 < N̄ < 9, during the 12-h meas-
urement of this data set.
The principal sources of decoherence in this experiment

are expected to be magnetic noise, motional dephasing,
and atomic collisions [23]. For small atom numbers and
low collision rates, we fit the Ramsey signal to the exp-
ression [24] vbðt; T2Þ ¼ v0=½1þ ðe2=3 − 1Þðt=T2Þ2�3=2, and
in the collision dominated regime we use a Gaussian form
vaðtÞ ¼ v0e−ðt=T2Þ2 , where v0 is the amplitude at t ¼ 0.
Both functional forms give the same T2 time within
our experimental error bars of T2 ¼ 2.6� 0.3 ms. The
π pulse times were 0.24 μs for j0̄i→jr̄i, 0.06 μs for the gap
between pulses, and 0.68 μs for jr̄i→j1̄i, giving a coher-
ence-to-RðπÞ-gate-time ratio of approximately 2600.
To further clarify the sensitivity to collisional dephasing,

Fig. 3 shows the measured T2 for different N̄, including the
case of N ¼ 1 Fock states which are selected using an
additional fluorescence measurement before the Ramsey
sequence [18]. We see that T2 ∼ 1=N̄, in contrast to the
1=N2 scaling observed for Greenberger-Horne-Zeilinger
states [25]. The observed 1=N̄ scaling for jWi states is
expected for decoherence dominated by collisions, since
the collision rate per atom is proportional to N̄. For
comparison, the T2 time was also measured for product
states jψi ∼ ðj0i − ij1iÞ⊗N . These states were prepared
using a two-frequency Raman laser coupling j0i and j1i
via the 5p3=2 level [26] as shown in Fig. 1. Comparison of
the j1̄i (jWi state) and product-state coherence data
suggests that for N ≳ 5 the coherence time is limited by
collisions. For N̄ < 5 as well as for the N ¼ 1 Fock-state
data, the product states show a longer coherence time. The
coherence of the jWi states is measured by comparison

with a phase reference defined by the beat note of the 7800
and 7801 Rydberg lasers, which have a measured beat note
linewidth of 100-Hz FWHM. This linewidth is consistent
with the observed shorter coherence time of the jWi states
compared to the product states that are referenced to the
Raman laser beat note, which is in turn locked to a stable
6.8-GHz microwave oscillator. We anticipate that compen-
sated optical traps and dynamical decoupling methods,
together with an optical lattice to reduce collisional effects,
can be used to greatly extend these coherence times [27].
To demonstrate ensemble-ensemble blockade we load

atoms into control (c) and target (t) dipole traps, optically
pump into j0̄icj0̄it, and apply one of two sequences.
Preparation of a superposition of j0̄i and j1̄i in the
target qubit is effected by the sequence Uaj0̄icj0̄it¼
R1;tðπÞR0;tðθÞj0̄icj0̄it. This should ideally leave the qubits
in the joint state j0̄ic½cosðθ=2Þj0̄it − sinðθ=2Þj1̄it� with the
probability of preparing j1̄it proportional to sin2ðθ=2Þ, as is
shown in Fig. 4(a). We see the expected time dependence
with a peak probability of Pj1̄i;t ∼ 0.52, consistent with our
earlier study of Fock-state preparation [18].
Rydberg blockade between two ensembles is observed

with the sequence Ubj0̄icj0̄it ¼ R1;cðπÞR1;tðπÞR0;tðθÞ×
R0;cðπÞj0̄icj0̄it. Here we have used state j0̄i of the
control ensemble to block the target transfer with the
final R1;cðπÞ pulse ideally leaving the qubits in the joint
state j1̄icj0̄it. The data in Fig. 4(a) show a ratio of
Pj1̄i;tðUbÞ=Pj1̄i;tðUaÞ ¼ 0.11ð1Þ, i.e., a blockade fidelity
of 0.89. This implies that the success probability of the
transition R0;cðπÞj0̄ic→jr̄ic is bounded below by the j1̄it

0 2 4 6 8 10 12
0

1

2

3

4

5

mean atom number N

T 2
 (

m
s)

FIG. 3 (color online). Dependence of ensemble coherence time
on N̄ for jWi states (red circles) and product states (blue squares).
The horizontal error bars represent the bounds for atom number
measurements interleaved between Ramsey measurements. The
open symbols are for preselected N ¼ 1 states. The dashed lines
are a guide to the eye.
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FIG. 4 (color online). Ensemble-to-ensemble blockade for
N̄c ¼ 9.9, N̄t ¼ 6.2. (a) Probability of preparing j1̄it without
blockade (red circles, solid line) and with blockade (black circles,
dashed line). The solid line is a fit to a decaying sinusoid function
from [18]. The dashed line is the same fit scaled by 11%.
(b) Blockade data postselected on the detection of j1̄ic. The
dashed-dotted lines in both panels show the expected signal due
to state leakage during blowaway in the control and target
regions.
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population ratio for the two sequences. We infer that at
least one atom is excited to the Rydberg state jric with
probability ≥ 0.89ð1Þ.
As a further check on the intersite blockade fidelity,

events where the control site ends in state j1̄ic after the
sequence Ub are postselected. The observed postselected
target population is shown in Fig. 4(b), along with the
expected blowaway leakage rate of the control and target
sites, which is measured to be 0.002 per atom. From the
data it can be seen that the postselected results are
consistent with perfect intersite blockade.
The observed high blockade fidelity exceeds that origi-

nally achieved in experiments with single-atom qubits
[28,29], and is certainly sufficient to create entanglement
between ensemble qubits. What has so far limited a demon-
stration of deterministic entanglement is the relatively
low probability, of up to 62% [18], with which the ensemble
state j1̄i can be prepared. In order to gain insight into what
is limiting the state-preparation fidelity we looked for
signatures of Rydberg-Rydberg interactions concurrently
with strong blockade. Ideally the probability of preparing
j1̄ic with sequence Ub should be independent of the pulse
area θ applied to the target ensemble. However, a clear
dependence on θ can be seen in Fig. 5(a). We believe this
effect is due to long-range interactions, where the amplitude
for Rydberg atom excitation in the target site is sufficiently
blockaded to prevent it frommaking the transfer to j1̄it with
any significant probability, yet the target ensemble Rydberg
excitation still interacts with the control ensemble strongly
enough to disrupt the control ensemble state transfer.
A similar situation of partial blockade together with
decoherence of multiatom ground-Rydberg Rabi oscilla-
tions was reported earlier in [19].
A two-atom Rydberg interaction effect should scale with

theRydberg double excitation probability, i.e.,P2 ∝ Ω2
N̄=B

2,
where B is the ensemble mean blockade shift [30]. To check
this, we extract the slopes from linear fits to the Pj1̄icðθÞ data
for small θ and compare to the scaling parameter

F ¼ Ω2
N̄t

�ðn=n0Þ12
ðR=R0Þ6

�−2
∝ Pdouble: ð3Þ

Heren is theRydberg principal quantumnumber andR is the
site-site separation. The larger F is for a given set of
parameters, the stronger the Rydberg-Rydberg interaction,
and, thus, the larger the slope of dPj1̄icðθÞ=dθ. Indeed, this is
the behavior we observe, as shown in Fig. 5(b), for a range of
N̄, R, and n.
This interaction effect hints at the possible mechanism

responsible for the observed reduction in the probabilityPj1̄i
of preparing the collective qubit state in a single ensemble.
The spatial extent of one ensemble is∼2σz ¼ 14 μm, giving
a length scale in between the lower two data sets in Fig. 5(a).
The intraensemble Rydberg interactions are significantly
stronger than those between atoms located in different
ensembles at the same separation, because the dipole-dipole
interaction angular factors favor atom pairs separated
along z [30]. These considerations imply that the lack of
perfect blockade leading to long-range Rydberg-Rydberg
interactions in a single ensemble only partially explains the
observed maximum of Pj1̄i ¼ 0.62 [18]. Another explan-
ation candidate is very strong interactions at short range
in a single ensemble that mix levels together and open
antiblockade resonance channels [31]. The doubly excited
molecular energy structure becomes difficult to calculate
with confidence at short range, with many molecular
potentials near resonant [32]. For our typical Rydberg state
97d5=2 this characteristic separation is ∼5 μm, and for a
6-atom sample with our ensemble spatial distributions
an average of 7 atom pairs out of 15 have R < 5 μm. We
conjecture that the strong short-range interactions give an
amplitude for double excitation, resulting in Rydberg-
Rydberg interactions that dephase the ground-Rydberg
rotations needed for state preparation, and thereby limit
the probability of preparing the ensemble j1̄i state. A related
reduction of the fidelity of Rydberg-mediated atom-photon
coupling in dense ensembles due to Rydberg–ground state
interactions has also been observed [11].
In conclusion, we have demonstrated the coherence of

ensemble qubit basis states. The coherence time scales
approximately inversely with the number of atoms, but is
still several ms and 2600 times longer than our character-
istic gate time for N ∼ 10. Additionally we have demon-
strated interensemble blockade with a fidelity of 0.89 and
∼1.0 when postselecting on control ensemble excitation.
We identified Rydberg-Rydberg interactions from weak
double excitations, either at long or short range, as a
possible mechanism limiting the fidelity of ensemble state
preparation. Future work towards ensemble entanglement
and quantum computation will explore the use of a back-
ground optical lattice to better localize the ensembles while
limiting uncontrolled short-range interactions.

This work was funded by NSF Grant No. PHY-1104531
and the AFOSR Quantum Memories MURI.
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FIG. 5 (color online). Probability of preparing state j1̄ic as a
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MULTIPARTITE W-STATE ENTANGLEMENT

VERIFICATION

In order to demonstrate multipartite entanglement it
is necessary to show that the results obtained in a mea-
surement cannot be reproduced with a separable state.
Thus we require that the N -particle state in question
|ψN 〉 satisfies

|ψN 〉 6= |ψK
A 〉 ⊗ |ψN−K

B 〉, (1)

for any K in the range N/2 ≤ K < N . In this sup-
plemental material we evaluate the observed signatures
of W -state entanglement. These signatures include the√
N̄-enhancement of the Rabi frequency between |0̄〉 and

|r̄〉, and the amplitude of the Ramsey oscillations.

Collective Rabi Frequency Enhancement

The interaction of an ensemble with a light field can
be written in the basis of individual atom excitations
|{0, 1}(1)〉 ⊗ |{0, 1}(2)〉 ⊗ ...|{0, 1}(N)〉. The Hamiltonian
Hint describing the evolution of the system is a block
tridiagonal matrix. The basis states are denoted as |nk〉,
where 0 ≤ n ≤ N is the eigenvalue of the excitation

number operator N̂ =
∑N

k=1 Ŝ
(k)
z +N/2, and the index

k labels the degenerate eigenstates, e.g. |11〉 = |10 · · ·0〉,
|12〉 = |01 · · ·0〉, etc. . Here Ŝ

(k)
z = 1

2
σ̂

(k)
z is the effective

spin operator for atom k along z. In this basis Hint is
given by:

Hint = A + ∆ =














∆0 A(0,1) 0 · · · 0
A

T
(0,1) ∆1 A(1,2)

...
. . .

. . .
. . .

...
A

T
(N−2,N−1) ∆N−1 A(N−1,N)

0 · · · 0 A
T
(N−1,N) ∆N















(2)

The matrix Hint has dimensions 2N ×2N , the dimension
of N 2-level systems. The dimension of the block di-
agonal sub-matrices is given by the binomial coefficient,
dim (∆n) =

(

N
n

)

≡ Nn. The sub-matrices, ∆n, contain
information concerning the sub-systems specific energy

levels

∆n =

Nn
∑

k=1

δ
(n)
k |nk〉〈nk| (3)

where δ
(n)
k refers to the energy of the kth basis state in

the subspace with eigenvalue n.
The matrices on the upper and lower diagonals couple

states with excitation numbers differing by ±1, |nk〉 α↔
|n± 1j〉 with coupling strength α defined by

[

A(n±1,n)

]

j,k
= αjk|(n± 1)j〉〈nk|
= |(n± 1)j〉〈(n± 1)j|Â|nk〉〈nk|, (4)

where

Â =

N
∑

m=1

αmŜ
(m)
x (5)

and αm is the strength of the light-atom coupling at atom
m. In an ideal Rydberg blockaded ensemble states with
n > 1 are not excited and all αm are equal. Departures
from the ideal case are accounted for by allowing for atom
specific αm and double excitations are included by trun-
cating the basis at n = 2 and adding the doubly excited
interaction energies to ∆2.

A strong blockade shift, δ
(n=2)
m = δdd � αm reduces

the available Hilbert space for the problem to n = {0, 1},
and Hint becomes:

Hint =

















0 α1 α2 · · · αN

α1 δ
(1)
1 0 · · · 0

α2 0 δ
(1)
2 0

...
...

. . .
...

αN 0 0 · · · δ
(1)
N

















(6)

The detunings δ
(1)
m are nominally 0, so it makes sense

to treat the δ(1) entries as a perturbation. Under the
condition of perfect blockade and no detuning, the en-
ergy eigenstates of Hint = A are the dressed states
1√
2

(|0̄〉 ± |1̄〉) with total angular momentum J = N/2

and N − 1 orthogonal states with total angular mo-
mentum J = (N/2 − 1): { 1√

2
(|0̄〉 ± |1̄〉) , |(1̄)⊥〉}, where

|1̄〉 ≡ ∑N

k=1
αk

ᾱN

|1k〉 with ᾱ2
N ≡ ∑N

k=1 α
2
k. The eigen-

values determine the speed at which the system evolves,
for 1√

2
(|0̄〉 ± |1̄〉) this speed is ±αN implying a collective
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FIG. 1. Monte Carlo calculations for N = 5 atoms for 10,000
randomized instances of atom positions and velocities con-
sistent with our experimental parameters of (a) Projection
of a symmetric eigenstate without inhomogeneous broaden-
ing, |−(0)〉 = 1√

2
(|0̄〉 − |1̄〉), onto the energy eigenstate of the

full inhomogeneous Hamiltonian Hint|−〉 = E−|−〉 and (b)
projection of the symmetric eigenstate onto the orthogonal

subspace {|(1̄)
(0)
⊥ 〉}.

enhancement of
√
Nα when the coupling strengths are

homogeneous.

Our system has low inhomogeneous coupling contribu-
tions as evidenced by the αN = 0.96

√
N̄α scaling ob-

served in our previous work [1], for reference an average
scaling of 0.972 is predicted from experimental param-
eters. The observation of

√
N̄ scaling of the coupling

strength is a classic signature of Rydberg blockade andN
participating wavefunctions, as the |1̄〉 state is the only
state that can evolve with that coupling strength. A
state with k-partite entanglement consistent with the ob-
served perfect blockade given by, |ψN 〉 = |1̄k〉 ⊗ |0̄N−k〉,
will still oscillate at the same

√
N̄ frequency, but the

amplitude will be reduced to the overlap with |1̄N〉,
|〈1̄N |ψN〉|2 = k/N , this is discussed further in the next
section.

The orthogonal singly-excited states |(1̄)⊥〉 do not cou-

ple to the symmetric states {|0̄〉, |1̄〉} under ideal condi-

tions (δ
(1)
k = 0). This becomes clear when the Bloch

picture is invoked, since the symmetric states have to-
tal angular momentum J = N/2 while the |(1̄)⊥〉 states
have J = N/2 − 1 and a rotation on the Bloch sphere
conserves angular momentum. Inhomogeneous broaden-
ing, including differential AC Stark shifts, Doppler shifts,
and finite intermediate state lifetimes, are added pertur-
batively with ∆ and provide a mechanism for coupling
into the |(1̄)⊥〉 space. This coupling should be negligi-
ble and reduce with increasing N and additionally will
not display the characteristic

√
N enhancement. Figure

1 shows simulated projections of 1√
2

(|0̄〉 − |1̄〉) along the

energy eigenstates of Hint for N = 5 atoms with our
experimental parameters.

Coherence Amplitude

Since the coupling to the orthogonal subspace is neg-
ligible for our experimental parameters, the amplitude
of the Ramsey fringe oscillations provide a threshold for
entanglement. A thermal sample of singly excited states
|1th〉 =

∑N
k=1 e

ıφk |1k〉, where φk is a random phase fac-
tor for the kth atom, will only couple back to |0̄〉 by the
amount of overlap with the |1̄〉 state. The projection
|〈1̄|1th〉|2 will average to 1/N , therefore an oscillation
with contrast above 1/N cannot be a thermal sample.

To generate a threshold for k-partite entanglement we
perform a numerical simulation along the lines of the
analysis in [2]. Briefly, the goal is to generate an upper
bound on a measurement of P1̄ = |〈1̄|ψ〉|2 as a function of
P0̄ = |〈0̄|ψ〉|2 for states |ψ〉 with a maximum of k entan-
gled particles. We establish bounds in two ways. First,
we do not assume Rydberg blocakde so multiple excita-
tions are possible. This is done by creating a random
k-partite entangled wavefunction

|ψ〉 = |ψ(k)
1 〉 ⊗ ...|ψ(k)

m−1〉 ⊗ |ψ(km)
m 〉, (7)

where |ψ(k)
i 〉 = sin (θi/2) |0̄(k)〉 + cos (θi/2) eiφi |1̄(k)〉, θi

and φi are randomly generated, and km = N − (m−1)k.
We extract the maximum P1̄ for a given P0̄ bin obtained
numerically to arrive at the thresholds shown in Fig. 2a)
for k = 3 particle entanglement with ensemble atom num-
bers N = 4 − 8. Any state above the threshold must
have at least k-partite entanglement. The black cross is
an experimental data point recorded for a sample with
N̄ = 8.8 atoms, verifying the presence of entanglement.

Rydberg blockade limits the Hilbert space to n ≤ 1 ex-
citations, which simplifies the calculation and enables an
analytical bound for the k-partite entanglement thresh-
old. The state in Eq. (7) includes kets with multiple
excitations. To remove these we impose the blockade
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FIG. 2. (color online) a) Numerically determined bounds
for (P0̄, P1̄) using Eq. (7). Rydberg blockade is not as-
sumed in the calculation so multiple excitations are allowed.
States above the (N,k) line imply there are at least k en-
tangled atoms in the N atom ensemble. Calculated bounds
for N = 4 − 8 are shown, top to bottom. The dashed black
line shows the amplitudes for the thermal singly-excited state
|1th〉 with N = 4. The solid black line represents the range of
experimental Ramsey oscillation data with the cross showing
the value at tgap = 0 ms from Fig. 2 in the main text. b) An-
alytical bounds assuming perfect blockade using Eqs. (8,9).
The entanglement thresholds are the straight lines shown for
N = 9 and k = 9− 6, top to bottom. The data shown by the
black line and cross exceeds the k = 7 threshold.

condition P(n>1) = 0 and write the state as

|ψ〉 =
(

a1|0̄(k)〉 + b1|1̄(k)〉
)

⊗ |0̄(N−k)〉. (8)

Maximization of P1̄ for a given P0̄ can be readily accom-

plished analytically to give

P1̄ =
k

N
(1 − P0̄). (9)

Note that this agrees with the limiting case of P0̄ = 0

from [2]. Rearranging (9) to give k
N

≤ Pmax

1̄

1−Pmax

0̄

, and given

our extreme value (P0̄, P1̄) = (0.44 ± 0.02, 0.46 ± 0.03)
we can show that we meet the threshold for creation of
the W -state with k

N
= 82 ± 6%. Similar arguments for

the presence of entanglement based on the amplitude of
Ramsey oscillations have been used in [3].

SUMMARY

In summary we have shown evidence for N particle
W-state entanglement on the basis of the following three
arguments. First, the excellent agreement of the ob-
served collectively enhanced Rabi frequency with theory
reported in our previous work[1] using the same experi-
mental setup and procedures as are used here implies an
N component wavefunction. Second, the amplitude of
the Ramsey-style oscillations for N̄ = 8.8 is four times
larger than the 1/N̄ limit expected from a thermal sam-
ple of singly excited states. Our data shows entangle-
ment without making the assumption of perfect block-
ade. Third, with the assumptions of perfect blockade,
entanglement percentage independent of N , and negligi-
ble coupling to {|(1̄)⊥〉}, which is justified by Fig. 1, then
k
N

= 82±6%. In other words 82±6% of the atoms in the
ensemble are participating in the W -state entanglement.
This result is not changed in a statistically significant way
when compared with simulations based on experimental
parameters that include imperfect blockade.
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